What Deepseek Experts Don't Need You To Know
페이지 정보
작성자 Sheena 작성일25-03-04 07:53 조회17회 댓글0건관련링크
본문
DeepSeek 모델은 처음 2023년 하반기에 출시된 후에 빠르게 AI 커뮤니티의 많은 관심을 받으면서 유명세를 탄 편이라고 할 수 있는데요. 물론 허깅페이스에 올라와 있는 모델의 수가 전체적인 회사의 역량이나 모델의 수준에 대한 직접적인 지표가 될 수는 없겠지만, DeepSeek이라는 회사가 ‘무엇을 해야 하는가에 대한 어느 정도 명확한 그림을 가지고 빠르게 실험을 반복해 가면서 모델을 출시’하는구나 짐작할 수는 있습니다. 이렇게 한 번 고르게 높은 성능을 보이는 모델로 기반을 만들어놓은 후, 아주 빠르게 새로운 모델, 개선된 버전을 내놓기 시작했습니다. 처음에는 Llama 2를 기반으로 다양한 벤치마크에서 주요 모델들을 고르게 앞서나가겠다는 목표로 모델을 개발, 개선하기 시작했습니다. 허깅페이스 기준으로 지금까지 DeepSeek이 출시한 모델이 48개인데, 2023년 DeepSeek과 비슷한 시기에 설립된 미스트랄AI가 총 15개의 모델을 내놓았고, 2019년에 설립된 독일의 알레프 알파가 6개 모델을 내놓았거든요. 또 한 가지 주목할 점은, DeepSeek의 소형 모델이 수많은 대형 언어모델보다 상당히 좋은 성능을 보여준다는 점입니다. DeepSeek의 오픈소스 모델 DeepSeek-V2, 그리고 DeepSeek-Coder-V2 모델은 독자적인 ‘어텐션 메커니즘’과 ‘MoE 기법’을 개발, 활용해서 LLM의 성능을 효율적으로 향상시킨 결과물로 평가받고 있고, 특히 DeepSeek-Coder-V2는 현재 기준 가장 강력한 오픈소스 코딩 모델 중 하나로 알려져 있습니다. 특히 DeepSeek-Coder-V2 모델은 코딩 분야에서 최고의 성능과 비용 경쟁력으로 개발자들의 주목을 받고 있습니다. In code enhancing skill DeepSeek-Coder-V2 0724 gets 72,9% score which is similar as the most recent GPT-4o and better than any other fashions except for the Claude-3.5-Sonnet with 77,4% score.
DeepSeek-Coder-V2 uses the identical pipeline as DeepSeekMath. Training information: In comparison with the unique DeepSeek-Coder, DeepSeek-Coder-V2 expanded the coaching data considerably by adding an extra 6 trillion tokens, Free DeepSeek rising the overall to 10.2 trillion tokens. DeepSeek-Coder-V2, costing 20-50x times lower than other models, represents a big upgrade over the original DeepSeek-Coder, with extra intensive coaching information, larger and more environment friendly fashions, enhanced context dealing with, and superior methods like Fill-In-The-Middle and Reinforcement Learning. Reinforcement Learning: The model makes use of a extra refined reinforcement learning strategy, together with Group Relative Policy Optimization (GRPO), which uses feedback from compilers and check circumstances, and a discovered reward mannequin to tremendous-tune the Coder. Model measurement and architecture: The DeepSeek-Coder-V2 mannequin is available in two major sizes: a smaller model with 16 B parameters and a larger one with 236 B parameters. Fill-In-The-Middle (FIM): One of many particular options of this model is its skill to fill in missing elements of code. Inference is only one slice: The most important gamers are nonetheless racing to construct subsequent-technology models that unlock frontier purposes and a bigger total addressable market. While inference costs drop, excessive-finish coaching and advanced AI fashions would seemingly continue to justify heavy funding, making certain that spending on cutting-edge AI capabilities remains sturdy.
That call was actually fruitful, and now the open-supply household of fashions, together with DeepSeek Coder, DeepSeek LLM, DeepSeekMoE, DeepSeek-Coder-V1.5, DeepSeekMath, DeepSeek-VL, DeepSeek-V2, DeepSeek-Coder-V2, and DeepSeek-Prover-V1.5, will be utilized for many functions and is democratizing the utilization of generative fashions. The most popular, DeepSeek-Coder-V2, stays at the top in coding tasks and might be run with Ollama, making it particularly attractive for indie developers and coders. Chinese fashions are making inroads to be on par with American fashions. Specialized Processing: Instead of broadly producing artistic content material, DeepSeek would possibly give attention to precisely deciphering and retrieving information based on consumer input, making it particularly appropriate for functions where pinpoint accuracy is crucial. The aforementioned CoT strategy may be seen as inference-time scaling as a result of it makes inference dearer by way of generating more output tokens. If the new and old model output an analogous output, then they’re in all probability fairly similar, and thus we train primarily based on the total power of the advantage for that instance.
The larger mannequin is extra highly effective, and its structure is based on DeepSeek's MoE approach with 21 billion "active" parameters. Unlike conventional models, DeepSeek-V3 employs a Mixture-of-Experts (MoE) structure that selectively activates 37 billion parameters per token. At an economical value of solely 2.664M H800 GPU hours, we complete the pre-training of DeepSeek-V3 on 14.8T tokens, producing the at the moment strongest open-supply base model. This makes the mannequin quicker and more efficient. So these calculations appear to be highly speculative - extra a gesture in direction of potential future profit margins than a real snapshot of DeepSeek’s bottom line proper now. I'll talk about my hypotheses on why DeepSeek R1 may be terrible in chess, and what it means for the way forward for LLMs. Provided that PRC law mandates cooperation with PRC intelligence companies, these policies provide the PRC with nice flexibility to entry DeepSeek person data without the legal course of that could be required in a rule-of-legislation country. By 2028, China also plans to ascertain greater than 100 "trusted data spaces". Understanding the challenges these funds face - and the way the State plans to handle them - is essential. But then they pivoted to tackling challenges as a substitute of simply beating benchmarks.
Should you have any kind of issues about where by and also how you can utilize Deepseek AI Online chat, you possibly can contact us on our own webpage.
댓글목록
등록된 댓글이 없습니다.