Six Methods To Simplify Deepseek
페이지 정보
작성자 Alethea 작성일25-02-01 11:09 조회8회 댓글0건관련링크
본문
The DeepSeek MLA optimizations have been contributed by Ke Bao and Yineng Zhang. The torch.compile optimizations had been contributed by Liangsheng Yin. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. 이 DeepSeek-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? 불과 두 달 만에, DeepSeek는 뭔가 새롭고 흥미로운 것을 들고 나오게 됩니다: 바로 2024년 1월, 고도화된 MoE (Mixture-of-Experts) 아키텍처를 앞세운 DeepSeekMoE와, 새로운 버전의 코딩 모델인 DeepSeek-Coder-v1.5 등 더욱 발전되었을 뿐 아니라 매우 효율적인 모델을 개발, 공개한 겁니다. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? 먼저 기본적인 MoE (Mixture of Experts) 아키텍처를 생각해 보죠.
DeepSeek Coder는 Llama 2의 아키텍처를 기본으로 하지만, 트레이닝 데이터 준비, 파라미터 설정을 포함해서 처음부터 별도로 구축한 모델로, ‘완전한 오픈소스’로서 모든 방식의 상업적 이용까지 가능한 모델입니다. DeepSeek-Coder-V2는 코딩과 수학 분야에서 GPT4-Turbo를 능가하는 최초의 오픈 소스 AI 모델로, 가장 좋은 평가를 받고 있는 새로운 모델 중 하나입니다. 그리고 2024년 3월 말, deepseek ai는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 deepseek ai china-VL을 출시했습니다. 바로 이어서 2024년 2월, 파라미터 7B개의 전문화 모델, DeepSeekMath를 출시했습니다. 그 결과, DeepSeek는 정해진 토큰 예산 안에서 고해상도 이미지 (1024X1024)를 효율적으로 처리하면서도 계산의 오버헤드를 낮게 유지할 수 있다는 걸 보여줬습니다 - 바로 DeepSeek가 해결하고자 했던, 계산 효율성 (Computational Efficiency) 문제를 성공적으로 극복했다는 의미죠. Multi-head Latent Attention (MLA) is a brand new consideration variant introduced by the DeepSeek team to enhance inference efficiency. AIMO has introduced a sequence of progress prizes. For these not terminally on twitter, a number of people who are massively pro AI progress and anti-AI regulation fly underneath the flag of ‘e/acc’ (quick for ‘effective accelerationism’). One instance: It will be important you understand that you are a divine being despatched to help these folks with their issues. NYU professor Dr David Farnhaus had tenure revoked following their AIS account being reported to the FBI for suspected youngster abuse.
The best hypothesis the authors have is that humans developed to consider comparatively simple issues, like following a scent within the ocean (and then, eventually, on land) and this sort of work favored a cognitive system that would take in an enormous amount of sensory information and compile it in a massively parallel manner (e.g, how we convert all the knowledge from our senses into representations we are able to then focus attention on) then make a small variety of decisions at a a lot slower fee. The reproducible code for the following analysis outcomes may be found in the Evaluation directory. That is exemplified in their DeepSeek-V2 and DeepSeek-Coder-V2 fashions, with the latter widely regarded as one of many strongest open-supply code fashions obtainable. Fill-In-The-Middle (FIM): One of the particular features of this model is its capacity to fill in lacking components of code. In a recent publish on the social network X by Maziyar Panahi, Principal AI/ML/Data Engineer at CNRS, the mannequin was praised as "the world’s best open-supply LLM" in keeping with the free deepseek team’s published benchmarks. Why this issues - the place e/acc and true accelerationism differ: e/accs assume humans have a bright future and are principal agents in it - and anything that stands in the way of people utilizing know-how is bad.
To get a visceral sense of this, check out this publish by AI researcher Andrew Critch which argues (convincingly, imo) that a whole lot of the danger of Ai methods comes from the very fact they may think quite a bit sooner than us. Then these AI programs are going to be able to arbitrarily entry these representations and bring them to life. Compared, our sensory programs gather knowledge at an infinite rate, no lower than 1 gigabits/s," they write. She is a extremely enthusiastic particular person with a keen curiosity in Machine learning, Data science and AI and an avid reader of the newest developments in these fields. In code enhancing ability DeepSeek-Coder-V2 0724 gets 72,9% score which is similar as the newest GPT-4o and better than another fashions apart from the Claude-3.5-Sonnet with 77,4% rating. The DeepSeek Chat V3 mannequin has a top rating on aider’s code enhancing benchmark. Yes it is better than Claude 3.5(currently nerfed) and ChatGpt 4o at writing code. In actual fact, the 10 bits/s are needed only in worst-case situations, and most of the time our surroundings changes at a much more leisurely pace". Reported discrimination towards certain American dialects; various teams have reported that detrimental adjustments in AIS seem like correlated to the usage of vernacular and this is very pronounced in Black and Latino communities, with numerous documented cases of benign question patterns leading to decreased AIS and subsequently corresponding reductions in entry to powerful AI providers.
댓글목록
등록된 댓글이 없습니다.